Exam Algorithms and Data Structures in C

Thursday 8 May 2014, 18:30 - 21:30 h.

This exam contains 4 problems, yielding in total 90 points.
The exam grade is (# points)/10 + 1.

1. (25 point)
This problem is about binary trees where each node contains an integer.

(a)
(b)

(c)

Give a type definition for the type Tree of binary trees.
When is a binary tree a search tree?
Define the C function with prototype

Tree makeSearchTree(int ar([], int n);

that constructs a balanced search tree from the integers in the array ar of length
n. You may assume that ar is sorted in ascending order, and that all integers in
ar are different.

Define the C function with prototype
int countLessThan (Tree t, int n);

that counts the number of nodes in t that contain an integer < n.

2. (20 point)
The C code below defines types and functions for the implementation of queues by lists.
However, there are 4 errors in the code so that functions do not work properly and/or
memory leaks may occur. Find these errors, indicate what is wrong and repair them.

1 typedef struct ListNode #List;
2

3 struct ListNode {

4 int item;

5 List next;

6 };

7

8 typedef struct Queue {

9 List list;

10 List lastNode;

11 } Queue;

12

13 woid listEmptyError () {
14 printf ("list_empty\n");
15 abort () ;

16 }

17

18 List addItem(int n, List 1i) {
19 List newList = malloc (sizeof (struct ListNode));
20 assert (newList !=NULL) ;
21 newlList->item = nj;

22 newList->next = 1i;

23 return newlList;

24}

25

26 int firstItem(List 1i) {
27 if (1i == NULL) {

28 listEmptyError();

29 }

30 return li->item;

31}

32

33 List removeFirstNode (List 1i) {
34 if (1i == NULL) {

35 listEmptyError () ;

36 }

37 free(li);

38 return li->next;

39 1}

40

41 wvoid freeList (List 1i) {
42 if (1i == NULL) {

43 return;

44 }

45 freeList (li—->next);

46 return;

47}

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T

Queue newEmptyQueue () {
Queue qg;
g.list = NULL;
g.lastNode = NULL;
return g;

}

int isEmptyQueue (Queue q) {
return (g.list == NULL);
}

Queue enqueue (int n, Queue qg) {
if (g.list == NULL) {
g.list = addItem(n,NULL);
g.lastNode = g.list;
} else {
(g.lastNode)->next = addItem(n,NULL);
}

return q;

}

int dequeue (Queue *gp) { /# precondition: gp != NULL =/

int n = firstItem(gp->list);
gp->1list = removeFirstNode (gp->1list);
return n;

}

void freeQueue (Queue q) |
freeList (g.list);
} .

. (25 points)

This problem is about heaps containing integers.

(a) Give a definition of a heap.

(b) Explain how a heap can be represented by an array of integers.

(c) Describe in pseudocode the algorithm Enqueue to add an integer to a heap, and
also the auxiliary algorithm Upheap to restore heap order. You may use either the
array representation or the pointer representation of heaps.

4. (20 points)
Consider the following algorithm:

algorithm Dijkstra (G, v)
input connected weighted graph G with node v;
the weights are nonnegative
output function d yielding for every node the length of a shortest path to v
S + nodes(G)
forall u € nodes(G) do
d[u] + oo
while S is not empty do
u ¢ node in S with minimal value of d
forall z € S with (u,z) € edges(G) do
d[z] + min(d[z], d[u])
return d

(a) The algorithm contains three errors. Indicate what the errors are and repair them.

(b) Modify the corrected algorithm into an algorithm FindShortestPath(G,v,w) that
finds and returns a shortest path from v to w in graph G.

